RIESZ-TYPE INEQUALITIES AND OVERDETERMINED PROBLEMS
FOR TRIANGLES AND QUADRILATERALS

MARCO BONACINI, RICCARDO CRISTOFERI, AND IHSAN TOPALOGLU

ABSTRACT. We consider Riesz-type nonlocal interaction energies over convex polygons. We
prove the analog of the Riesz inequality in this discrete setting for triangles and quadrilaterals,
and obtain that among all N-gons with fixed area, the nonlocal energy is maximized by a
regular polygon, for N = 3,4. Further we derive necessary first-order stationarity conditions
for a polygon with respect to a restricted class of variations, which will then be used to
characterize regular N-gons, for N = 3,4, as solutions to an overdetermined free boundary
problem.

1. INTRODUCTION

In this paper we study a class of nonlocal repulsive energies of generalized Riesz-type on
polygons. We consider the nonlocal energy

E(E) ::/E/EK(Ix—yl)dmdy (1.1)

defined on measurable subsets £ C R? with finite Lebesgue measure. We assume that the
kernel K satisfies the following assumptions:

(K1) K € C'((0,00)), K > 0;
(K2) K is strictly decreasing;
(K3) K satisfies

/1 K(r)rdr < oo. (1.2)
0

The kernel K is possibly singular at the origin, and the integrability condition (1.2) guarantees
that the energy (1.1) is finite on sets with finite measure (see Remark 2.4). The prototype
case is the Riesz kernel K(r) = r~%, with a € (0,2).

It is well-known that the energy (1.1) (in any dimension) is uniquely maximized by the ball
under volume constraint, as a consequence of Riesz’s rearrangement inequality. Moreover,
at least in the case of the Riesz kernels, balls are characterized as the unique critical points
for the energy (1.1) under volume constraint, in the following sense. We define the potential
associated to a measurable set E C R? with finite measure as

vp(z) = /E K(lz - y)) dy, (1.3)
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and say that a set E is stationary for £ with respect to area-preserving variations if vg
is constant on OFE. It was proved in a series of contributions [8,9, 15, 18] via moving plane
methods, and in full generality for Riesz kernels in [12] via a continuous Steiner symmerization
argument, that balls are the only sets which enjoy this property: in other words, when
defined over all measurable sets of fixed measure, the overdetermined problem for the potential
enforces the symmetry of the set.

The scope of this paper is to investigate the same two questions in a discrete setting, namely
when restricting the class of sets on which we evaluate the energy to convex polygons with
a fixed number of sides. While on the one hand this restriction simplifies some aspects of
the problem by essentially reducing it to a finite dimensional problem, on the other hand it
introduces new challenges and requires new techniques, as classical arguments such as moving
plane methods do not apply in restricted classes.

We first consider the problem of the area-constrained maximization of the nonlocal energy
£ in the class 2y of convex polygons in R? with N > 3 sides: for m > 0,

max{&(P) : P € Py, |P| =m}, (1.4)

where |P| := L2(P) denotes the area of a polygon P € Zy. It is in general expected that for
each fixed number of sides the regular N-gon is the unique maximizer of (1.4). In our first
main result we show that this is true in the case of triangles and quadrilaterals.

Theorem 1.1. The equilater triangle is the unique (up to rigid movements) maximizer of €
in P3 under area constraint, and the square is the unique (up to rigid movements) mazximizer
of € in Py under area constraint.

The proof relies on the combination of two properties that had already been established
in the literature and are well-known to experts: (a) the fact that the nonlocal energy is
increasing under Steiner symmetrization of a set; (b) the observation, originally due to Pélya
and Szeg6, that for any given triangle or quadrilateral it is possible to find a sequence of
Steiner symmetrizations which converge to an equilateral triangle or to a square, respectively.
This strategy was used by Pdlya and Szegé [17, p. 158] to prove their conjecture about the
optimality of the regular N-gon for various classical shape functionals, such as the principal
eigenvalue of the Laplacian, the torsional rigidity, and the electrostatic capacity, for N = 3, 4.
The main drawback of this approach is that, for more than four sides, it seems not possible
to construct in an easy way a sequence of symmetrizations converging to the regular N-gon
and preserving the number of sides at each step. Therefore the extension of Theorem 1.1 to
the case IV > 5 seems to be, as far as we know, an interesting open problem.

Besides the above mentioned conjecture by Polya and Szegd, solved only for the logarithmic
capacity in [19], the problem of optimality of regular N-gons for variational functionals has
been the object of several contributions. Among these, we mention the papers [5, 10, 16],
dealing with various shape optimization problems on polygons involving spectral functionals,
and [4], where it is proved that the regular polygon minimizes the Cheeger constant among
polygons with fixed area and number of sides.

Next, we turn to the second main question that we address in this paper, namely whether
the regular N-gon is characterized by the stationarity conditions for problem (1.4), as it is
the case for the ball. Of course, we need to consider a notion of criticality with respect to
variations that preserve the polygonal structure and the number of sides. Following [11], in
Section 3 we introduce two specific classes of perturbations of a given polygon: the first is
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obtained by translating a side of the polygon parallel to itself, the second by rotating a side
with respect to its midpoint. We then show that, for N = 3 and N = 4 sides, the unique
N-gon which is stationary with respect to these two families of perturbations is the equilateral
triangle or the square, respectively.

In order to state precisely our second main result, we need to fix some notation that will be
used throughout the paper. Given two points P, Q € R?, we denote by PQ := {tP+(1—1)Q :
t € [0,1]} the segment joining P and Q. For N > 3, let P € &y be a polygon with N
vertices P, ..., Py. For notational convenience we also set Py .= Py, Py+1 = P1. We let for
ie{l,...,N}:

v; be the exterior unit normal to the side P;P;1,

£; be the length of the side P; P11,

0; be the (interior) angle at the vertex P;,

M; be the midpoint of the side P;Pj4.

Denoting by vp the potential associated with the polygon P according to (1.3), we then
consider the following two conditions:

1 1
— vp(z) dH () = / vp(z)dH (z) foralld,je€ {1,...,N}, (1.5)
‘gi P;Pi1 EJ PjPji1

which corresponds to the criticality condition for the energy £ under an area constraint, when
sides are translated parallel to themselves, and

/ vp(z)|x — M| dH (z) :/ vp(z)|x — M;|dH () for allie {1,...,N}, (1.6)
PiMi Pi+1M7;

which corresponds to the criticality condition for the energy £ under an area constraint,
when a side is rotated around its midpoint. The derivation of (1.5) and (1.6) will be given in
Section 3, see in particular Theorem 3.7.

Our second result is the following.

Theorem 1.2. If P € &3 obeys condition (1.6), then P is an equilateral triangle. If P € P,
obeys conditions (1.5) and (1.6), then P is a square.

This result can be interpreted as a Serrin-type theorem yielding the characterization of
the regular N-gon as the unique solution of the overdetermined problem (1.3)—(1.5)-(1.6) for
the potential vp. Despite the large literature on overdetermined boundary value problems,
symmetry results of this kind in a polygonal setting seem to have been considered only
recently, with a first contribution by Fragala and Velichkov [11] which was also inspirational
for our work. In [11] it was proved that the overdetermined problem corresponding to the
stationarity conditions for the torsional rigidity and for the first Dirichlet eigenvalue of the
Laplacian, under an area or a perimeter constraint, characterizes the equilateral triangle
among all triangles.

The proof of Theorem 1.2 in the case of triangles (see Section 4) is relatively simple and is
based on a straightforward reflection argument. However, we also give a second proof which
will be extended to the case of quadrilaterals in Section 5 (and, hopefully, might work in
general for an arbitrary number of sides). This second argument is inspired by an idea of
Carrillo et al. [7] and is based on a continuous symmetrization (in the spirit of the continuous
Steiner symmetrization [3]), see also Figure 3. We show that, if two sides of a triangle have
different lengths, then by translating the common vertex parallel to the third side the first
variation of the energy is different from zero. In turn, since the criticality condition with
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respect to this variation can be expressed in terms of the conditions (1.5) and (1.6), we
obtain that all sides of a critical triangle have to be equal.

The proof for quadrilaterals exploits the same idea, and uses a continuous symmetrization
to prove that the conditions (1.5) and (1.6) enforce the property of being equilateral, thus
reducing the proof to the class of rhombi; then in a second step we prove that the polygon
has to be also equiangular, using a reflection argument.

We conjecture that Theorem 1.2 should be true for every fixed number N > 3 of sides, and
that a possible strategy for the proof could follow the same ideas sketched above: one should
first prove that the polygon is equilateral via continuous symmetrization, and then that it is
equiangular via reflection. This strategy is somehow reminiscent of Zenodorus’ classical proof
of the isoperimetric property of the regular polygons [13]. Notice that a positive answer to
this question would also provide an extension of Theorem 1.1 to the case N > 5. However,
the study of the sign of the first variation in the case N > 5 is significantly more involved
and seems to require new ideas. This will be the object of future work.

We also remark that, for N = 3, every triangle satisfies the conditions (1.5), which there-
fore do not yield symmetry at all (see Remark 4.1). However, in the case of quadrilaterals
both (1.5) and (1.6) are required to characterize the square: indeed there exists quadrilater-
als different from the square satisfying (1.5) but not (1.6) (e.g. rhombi), and quadrilaterals
different from the square satisfying (1.6) but not (1.5) (e.g. rectangles).

We conclude this introduction by mentioning that our motivation for the study of this
problem comes from our recent work [2] on an anisotropic nonlocal isoperimetric problem,
recently introduced in [8] as an extension of the classical liquid drop model of Gamow, in
which we considered the volume-constrained minimization of the sum of the nonlocal energy
£ and a crystalline anisotropic perimeter. Due to the presence of a surface tension whose Wulff
shape (i.e. the corresponding isoperimetric region) is a convex polygon, it was shown that at
least in the small mass regime minimizers of the total energy have a polygonal structure; this
naturally led us to the question of characterizing the polygons which are stationary for the
nonlocal energy €.

Structure of the paper. The proof of Theorem 1.1 is given in Section 2 via Steiner symmetriza-
tion. In Section 3 we derive the identities (1.5) and (1.6) as stationarity conditions for the
nonlocal energy with respect to two particular classes of variations. Finally, Section 4 and
Section 5 contain the proof of Theorem 1.2 in the case N = 3 and N = 4, respectively.

2. MAXIMALITY OF EQUILATERAL TRIANGLES AND SQUARES BY STEINER
SYMMETRIZATION

In this section we will give a proof to Theorem 1.1. Our proof is based on Steiner sym-
metrization and a simple argument by Pdlya and Szeg6é which describes two sequences of
symmetrizations transforming a given triangle into an equilateral triangle and a given quadri-
lateral into a square, respectively.

We start by giving the necessary definitions and prove two lemmas regarding the role of
Steiner symmetrization on the nonlocal energy £: in particular, we show that the nonlocal
energy is strictly increasing with respect to Steiner symmetrization of a set, unless the set
is already symmetric. Since this property is not restricted to dimension 2, in the first part
of this section we work in general dimension d > 2, and we replace assumption (K3) on the
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kernel by its general version
1
/ K(r)ri~ldr < oc. (2.1)
0

The proof is essentially contained in [14, Chapter 3], but we include the details here to point
out the properties that we need. See also [6] for details on rearrangement inequalities.

In the following, we denote by ey, ..., eq the vectors of the canonical basis of R?. We also
denote the generic point of R? = R4~ x R by = = (2/, z4).

Definition 2.1. Given any measurable set £ C RY, its symmetric rearrangement is defined
as B* := B, with wgr? = |E|, where wy denotes the volume of the unit ball in RY.

Definition 2.2. For E C R? and 2/ € R, let B, := {24 € R: (2/,24) € E}. The Steiner
symmetrization of E in the direction e is defined as

E*® = {($I7$d) eR%: 2’ eRYY 24 € (Ea:’)*}

Notice that the Steiner symmetrization is a volume preserving operation.

The first lemma shows that Steiner symmetrization of a set E increases its nonlocal energy
£, and it follows from Riesz’s rearrangement inequality in one dimension (see [14, Lemma 3.6])
and Fubini’s theorem.

Lemma 2.3. Let E C R? be a measurable set with finite measure. Then
E(F) < E(E?).

Proof. We first prove the following property: given three measurable sets F, G, and H C R¢
with finite measure, we have

I(F,G,H) < Z(F*,G* H?), (2.2)
where Z(F,G, H) = [gpaJga xF(2)xc(® — y)xm(y) dz dy. Indeed, by Fubini’s theorem

I(F,G,H)Z/ / //XF(ﬂc’,xd)xc(ﬂf/—y/,ﬂfd—yd)XH(y’,yd)dxddyddw’dy’
Rdfl Rd—l RJR

=/ / //XFI/(wd)XGz/_y/(«Td_yd)XHy/(yd) dzg dyg dz’ dy’

Rd—1JRd-1 JRJR

</ / //X(Fz/)*(xd)X(Gz/y/)*(xd_yd)X(Hy/)*(yd) dzq dyg dz’ dy’
rd-1Jri-1 JRJR

_ / / xre (2)x6 (@ — y)xae(y) de dy = T(F*, G*, H*),
R4 JRd

where the inequality follows from the one dimensional Riesz’s rearrangement inequality.

Now, since the kernel K is strictly decreasing, for any ¢ > 0 there exists r(¢) > 0 such that
{z e RY: K(|z]) > t} = B,(+). Using the layer cake formula (see [14, Theorem 1.13]) and
Fubini’s theorem, we can rewrite the nonlocal energy as

&) = [ [ xe@K(e = yhxets) dedy

- /Rd/Rd xe(@) (/OOO Xix> (|7 = yl) dt) xe(y) dzdy
- /OOO </Rd/Rd XE(Z)XB, (T —y)xe(y) dz dy) dt.
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Then (2.2) implies that

L] xetan, @ - nxe@dedy < [ [ e, @ - e @ dedy,
R4 JRd RdJRd

Hence, rewriting the energy of E° using Fubini’s theorem and the layer cake representation
as above, we get £(F) < E(E?). O

Remark 2.4. Notice that for every measurable set E C R? with finite measure, in view of the
assumption (2.1) and of the monotonicity of K, the potential vy defined in (1.3) is a bounded

function:
op(z) = / K(jz — ) dy + / K(jz — y)) dy
ENBj(x) E\Bi(x)
< /B K(|y)) dy + K (1)|E\By(z)|
1

1
d/ K=t dr + K()|E| = C(d, K, |E]) < oo
0

In turn, the energy of E is finite: £(F) = [pvp(z)dz < C(d, K, |E|)|E|.

The next lemma shows that if a set and its Steiner symmetral have the same nonlocal
energy, then they are translates of each other almost everywhere.

Lemma 2.5. Let E C R? be a measurable set with finite measure. Then E(E) = £(E®) only
if |[EA(E® 4+ 40)| = 0 for some yo € R, where I\ denotes the symmetric difference of two
sets.

Proof. For dimension d = 1, the result follows from [14, Theorem 3.9]. Let x(x) :=
for z € R% For d > 1, we note that, by Fubini’s theorem, the equality £(E) = 5( %) is
equivalent to

/ - / // XE(IJ’ d)XE(Z/,yd) K,(l‘, y,,l‘d yd) dzg dyq dz’ dy/

Ri-1JRI-1 JRJR Y
/ - / // X S(x/’xd)XEs (y/’yd) ”(93/ - y,,l“d — yq) dzgdyg dz’ dy’.
Rid-1JRd-1 JRJR

Since xg= (7', 24) = X(&,,)* (Ta), defining

7! (Em/,/i(x/ -, '),Ey/) = // XE,, (xd)XEy/ (ya) k(2" — ', 2q — ya) dwg dyqg
RJR

the above equation becomes

/]Rd 1/Rd1 x’7/€$_y7 )7Ey')dx,dy/

/ / Zl k(=) (Ey/)*) dz’ dy'.
Rd—1 JRd—1
In turn, since by Riesz’s rearrangement inequality (cf. [14, Theorem 3.7])
By, 5(2' =y, ), By) ST ((Bw)"s 5" =y, ), (By)Y),
we get that
I (B, w(a’ =y, ), Ey) =T ((Bw)* k(2 =y, -), (By)"),
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for a.e. 2/, y/ € R%"!. This implies, by the one dimensional result, that E,, and E, are both
intervals centered at the same point for a.e. (2/,9/) € R4~ x R¥~!. Moreover, this point is
independent of (z/, ') as we can repeat the argument for any (2, §') with 7 € R4~! and obtain
that the centers of E,» and Ejy coincide. Therefore the set I, after possibly a translation in
the x4 direction, is Steiner symmetric up to a set of measure zero, i.e., |[EA(E® +y)| = 0 for
some yo € RY. O

We are now ready to prove our first main result which relies on an argument by Pélya and
Szego that we detail here.

Proof of Theorem 1.1. Let Py € &3 be an arbitrary triangle with |Py| = 1. Following [17,
Section 7.4], we will describe an infinite sequence of Steiner symmetrizations of Py which will
transform it into an equilateral triangle. To this end, let 2a¢ be the length of one of the
sides of Py. Then the corresponding altitude perpendicular to this side has length a; L By
Steiner symmetrization of Py in the direction of this side, we obtain an isosceles triangle Py
where the length of equal sides is a1 = (a3 +ay?)'/2. Next we symmetrize P; in the direction
of one of the equal sides to obtain another isosceles triangle Ps with equal sides of length
as = (a3/444/a3)"/?. Repeating this process, we see that the length of the equal sides of the
isosceles triangle P, is given recursively by a, = (a2_,/4 +4/a?_|)"/? with n > 2. Taking
the limit n — oo we see that a, — 2/v/3, and since in each iteration the area of P, is one, in
the limit, we obtain that all three sides are of length 2/+v/3.

Now, suppose Py € P4 is an arbitrary quadrilateral with [Py| = 1. Symmetrizing Py in the
direction of one of its diagonals we obtain a kite, P; (that is, a quadrilateral with a diagonal
as axis of symmetry). Next, we symmetrize P; in the direction of its axis of symmetry and
obtain a rhombus, Ps. Let as be the side length of Py. Symmetrizing P5 in the direction of one
of its sides we get a rectangle P3 such that its longer side has length az = as. Symmetrizing
P3 in the direction of one of its diagonals we obtain another rhombus, P4, with side length
as = (a3/(a3 + 1) + (a§ + 1)/(4a§))1/2. Continuing this process we will obtain a sequence
of quadrilaterals such that P, is a rhombus for n even, and a rectangle for n odd. If a,
denotes the side length of P, (n even) or the length of the longer side (n odd), we have by
construction

2 4
a a +1
2n—1 2n—1
A2n+1 = A2n, azn = 1 1 + 4 D) for n 2 27
ag, 1t Aop—1

recursively. Taking the limit n — oo we get that a, — 1; hence, in the limit successive
symmerizations of Py yield a square.

Since, by Lemma 2.3, Steiner symmetrization increases the nonlocal energy &, we obtain
that among the classes &3 and #4 an equilateral triangle and a square maximize &, respec-
tively. The uniqueness of the maximizer in each class, up to rigid movements, follows from
Lemma 2.5. (]

3. STATIONARITY CONDITIONS: SLIDING AND TILTING

We derive the stationarity conditions for the nonlocal energy (1.1) under an area constraint,
with respect to two particular classes of perturbations of a polygon P € &y, obtained by
sliding one side parallel to itself, or tilting one side around its midpoint. More precisely,
we consider the following two families of one-parameter deformations. In the following, we
assume that P € &y is a given polygon with N > 3 vertices Pi,..., Py.
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Definition 3.1 (Sliding of one side). Fix a side PPy, i € {1,...,N}. For t € R with
|t| sufficiently small, we define the polygon P; € &y with vertices P},..., Pk obtained as
follows (see Figure 1):
(i) all vertices except P; and Py are fixed, i.e. Pj = P; for all j € {1,... N}\{i,i+1};
(i) the vertices Pz-t and Pf "1 lie on the lines containing P;_1 F; and Pj11 P2, respectively;

(iii) the side P/ P!, , is parallel to P;P;11 and at a distance [t| from P;P; 1, in the direction
of v; if £ > 0 and in the direction of —v; if ¢ < 0.
Explicitly:

t P—PF_ " t P — Py
P =P,
sin 01 |R - Pz‘_1| ’ 1 w1+

Pl=P .
! o sin 01 | Pis1 — Pigal

P71 pt

-
-

-
-

\

\

P! \
\
\

P . _/tPH'Q
0; ! LT .{P'“rl
P.

"N — : l
P} !

Pi+1

Vi vi

FIGURE 1. A polygon P and its variation P! (shaded region) as in Defini-
tion 3.1, obtained by sliding the side P;P;y1 in the normal direction at a
distance [t|: the case t > 0 (left) and ¢ < 0 (right).

Definition 3.2 (Tilting of one side). Fix a side P,Pi11, i € {1,...,N}. For t € R with
|t| sufficiently small, we define the polygon P; € Py with vertices P}, ... ,P}V obtained as
follows (see Figure 2):
(i) all vertices except P; and P;;; are fixed, i.e. Pjt = Pjforall je{l,... N}\{i,i+1};
(ii) the vertices P! and P!, | lie on the lines containing P;_ P; and P; 41 P; o, respectively;

(iii) the line containing P}P},, is obtained by rotating the line containing P;P;{; around

the midpoint M; of P;P;;1 by an angle t;
(iv) the direction of rotation is such that, for ¢ > 0, the point P! 1 belongs to the segment

P11 P19, while for ¢t < 0 the point Pit belongs to the segment P;_ FP;.

Explicitly:
l;sint P,— P4 " l;sint Piiv1— Piyo

P, =PF. — .
2 sin(@i — t) |PZ - Pi,1| ’ i+l ol QSin(HiJrl + t) ‘PiJrl — P¢+2‘

P!l =P+

In Proposition 3.4 and Proposition 3.5 below we compute the first variation of the nonlocal
energy (1.1) and of the area of a polygon P with respect to these two classes of perturbations.
Before doing that, we prove a first variation formula for the nonlocal energy with respect to
a general perturbation. The derivation is valid also in any dimension d > 2, replacing the
assumption (K3) by (2.1).
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P

t
Pi+l

FIGURE 2. A polygon P and its variation P! (shaded region) as in Defini-
tion 3.2, obtained by tilting the side P;F;11 around its midpoint M; by an
angle t > 0.

Proposition 3.3 (First variation of £). Let E C R? be a bounded open set with piecewise
smooth boundary. Let ® : R? x [—t,f] — R2, for t > 0, be a flow of class C? such that
®(x,0) =x. Then

d

dt t:og(q)t(E)) - 2/8E vp(z) X (2) - vp(z) dH! (z), (3.1)

where X (x) = %‘t:o is the initial velocity, vy is the potential of E defined in (1.3), and
v 18 the exterior unit normal on OFE.

Proof. The proof follows the same strategy used in [1] to compute the first variation in the
particular case of a Riesz kernel. We regularize the kernel by introducing a small parameter
6 > 0 and by setting

Ks(r) = K(r +9), Es(E) = /E/EK5(|J: —y|) dz dy, (3.2)

so that K5 € C'([0,+00)). By using the kernel K5 we can bring the derivative inside the

integral and all the following computations are justified.
We let () :== ®(x,t) and JP;(x) = det(DP;(x)) denote the Jacobian of the map ®;. By
a change of variables we obtain for ¢ € (—t,t)

4 e (@i(m) / / K(|94(2) — By (y)]) T @y ()T By () da dy

dt
~ /E /E Ks([#(x) ~ <>|)J<1>t<m>agft< )drdy
(

/ Oy(z) — Pi(y)  0P(z,t)
”/E/EK‘S('W)_ )P =) DD g 4110, a2y

(
=2 [ [ K@) - ) Iu(o) 2 () dndy

2 [ [ [Tulgs(2i0) — ) (D2:() ] - P2 () s) day
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Now integrating by parts in the last integral we obtain

SN =2 [ [ K@) - ) swi(a) 5 ) dody

. 10P(z,t) _
_Q/E/EK(S("I%(QU)—¢t(y)|)d1vx< 5 (D®y(z)) TJ<I>t(g;)Jq>t(y)) dz dy

9D (z, 1)
w2 [ ] Ks(nla) - @) T (09 ()

-T

ve(2)J®(z) J O (y) dH! (z) dy,
that is

d
L@ (E / / K5(|@4(x) — ®(y))ha (x5, 1) da dy

+ / (104 (x) — () )ha(x, v 1) dH () dy,
FE JOFE

where we set

hi(z,y, 1) = 2J®,(z) &g;bt () — 2divy (aq)gz 1) (D®,()) _TJ<I>t(:c)J<I't(y)> :
ho(x,y,t) = 26(1);:’ 2 (Dtl)t(x))_T vp(x)J O (z)J P (y).

By using the definition (3.2) of K and the fact that the functions hi(x,y,t) and ha(z,y,t)
are uniformly bounded, one can then show that E(®:(E)) — £(P+(E)) and

%gé(q%( //K (|¢(z) — Po(y))h1(z,y,t) dz dy

+ / K(|®4(x) — ®4(y) ) o, . ) dH () dy,
FE JOE

as § — 0, uniformly with respect to ¢ € [—t,]. Therefore we conclude that

d
T, £ (2e(E)) = H(0) = 2/ K(jz = y))X (z) - vp(z) dH' (z) dy,
t=0 E JOE
where we used the Taylor expansion ®;(z) = x + tX(z) + o(t), from which it follows, in
particular, the identity a‘éft lt=0 = div X. O

We can now use the first variation formula (3.1) to compute the derivative of the energy
along the perturbations of a polygon introduced in Definitions 3.1 and 3.2.

Proposition 3.4 (Sliding first variation). Let P € PN and let {P;}; be the family of per-
turbations of P as in Definition 3.1, obtained by sliding the side P;P;y1 parallel to itself.
Then:

%‘tzog(ﬂ) = 2/P~P- vp(z) dH (z), (3.3)
dt’ Pl = (3.4)

Proof. The flow {®;}; which induces the perturbation {P;}; obeys (®;(z) — z) - v; =t for all
x € P;P;41; therefore its initial velocity has normal component

X-l/izl ODPiTH-l
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and X - v; = 0 for all j # . Hence (3.3) follows from Proposition 3.3. The first variation
of the area (3.4) is computed in [11, Lemma 2.7] in the case of a triangle, but the proof is
obviously the same for a general polygon, and follows from the identity

|Py| = |P| + lit + o(t) ast — 0,
which can be checked by elementary geometric arguments. ([l

Proposition 3.5 (Tilting first variation). Let P € &n and let {P}+ be the family of per-
turbations of P as in Definition 3.2, obtained by tilting the side P;Pj+1 with respect to its
midpoint M;. Then:

d
S| epy =2 / vp ()| — My dH () — 2 / op(@)z — My dH (z),  (3.5)
dt le=o Pl MPiit

d
EL:OW —0 (3.6)

Proof. We can explicitly write a flow {®;}; which induces the perturbation {P;}: on the side
P;P;yq it is given by

sint
T G =)
sint
sin(0i+1 + t)

where 7; = &%I(Pi_l — P) and 741 = ﬁ(PHQ — P;4+1) are the unit vectors parallel to the

x—Mi|7‘i if x € P,M;,
Py(x) =
|z — M;|Ti41 if o € M; Py,

sides P;_1P; and P;11P; 0, respectively. Then the normal component of the initial velocity is

— M.
—7‘1., l’Ti-l/Z':’x—Mi‘ ifl’EPiMi,
sin 6;
|$_Mz‘
sin«9i+1

(and X(z) - v for x € PjPj41, j # i). We obtain (3.5) by applying Proposition 3.3. (No-
tice that the flow {®;}; does not satisfy the regularity assumption in Proposition 3.3, but
nevertheless it can be checked that the first variation formula (3.1) holds for this specific
perturbation).

The first variation of the area (3.6) is computed in [11, Lemma 2.6] in the case of a triangle,
but the proof is obviously the same for a general polygon, and follows from the identity

|Pi| = |P| + o(t) ast — 0,

which can be checked by elementary geometric arguments. [l

X(z) v =
Tit1 Vi = —|1,‘ — M1| if x € M; P

We are now ready to show that the equations (1.5) and (1.6) are the stationarity conditions
for the nonlocal energy under an area constraint, with respect to the variations considered in
Definitions 3.1 and 3.2 respectively.

Definition 3.6 (Stationarity). Let P € &y and let {P;}; be a one-parameter deformation
of P, such as those considered before. We define an area-preserving variation by setting

Py = AP here Ay = /P :
t = At Ft where Ay ‘= |Pt| s (37)
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so that |P;| = |P| for all t. We say that P is stationary with respect to the variation {P;} if
S| @) =0 (3.8)
dtle=0 "V 7 '

Theorem 3.7 (Stationarity conditions). A polygon P € Py is stationary
(1) with respect to the family of perturbations in Definition 3.1 on the i-th side, for
ie{l,...,N}, if and only if
1

- vp(x) dH (z) = (3.9)
1 PiPH»l

where p = %' Jop vp(x) @ - vp(x) A (z) is a constant independent of i;
(ii) with respect to the family of perturbations in Definition 3.2 on the i-th side, for
ie{l,...,N}, if and only if

/ vp(@)]e — M| dH (z) = / vp(@)|e — M| dH (z). (3.10)
P M; Py M;

Proof. Let {®:}; be a flow such that P; = ®,(P) and let X(x) = %h:o be the initial
velocity. We compose the flow {®;}; with a rescaling which restores the area constraint: more
precisely, we define

U(x,t) = \®(x,t)

where ); is defined in (3.7). Notice that ¥y(P) = \®(P) = NPy = ﬁt, and the initial
velocity of the flow {U;}, is given by

W (z,1) d\ 1 d|[Py
V()= 20 x4+ S8 = X () - —— :
(z) ot ‘t:O (z) + at le=o”" (=) 2|P| dt ="
Then by Proposition 3.3 we obtain
d ~
ShgPr=2 [ @) Y@ v
t=0 P
1 d
—2 [ up(a) X(a) - vp(a) M) - gl | vr@)z-vp(a) a(a)
oP Pl dt li=0 Jop

d 1 d|Py / .
dt ‘t:og(Pt) |P| dt ‘t:o op vp(z)z - vp(x)dH (x)

Therefore if P is stationary with respect to the perturbation {P;};, that is if (3.8) holds, then
there exists a constant p such that

d| Py ‘
dt le=0’

%LOS(R) - (3.11)

with p explicitly given by

1
o= vp(z) - vp(z) dH ().
Pl Jop
The conclusion follows by inserting in (3.11) the first variation formulas obtained in Propo-

sitions 3.4 and 3.5. OJ
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3.1. Another family of volume-preserving variations. In this subsection we introduce
a third family of area-preserving perturbations of a polygon. We compute the corresponding
first variation of the nonlocal energy and we show that it can be written as a combination of
the sliding and tilting first variations.

Definition 3.8. Fix three consecutive vertices P;_1, P;, Pi11,4 € {1,..., N}, of the polygon
P. For t € R with |t| sufficiently small, we define the polygon P; € Py with vertices
P}, ..., P} obtained as follows (see Figure 3):

(i) all vertices except P; are fixed, i.e. P} = P; for all j € {1,... N}\{i};

(ii) the vertex P! is given by

Py — P,
Pl=p 4+t =L
‘ " Py — P
that is, Pz-t lies on the line through P; parallel to the diagonal P;_; P;1, at a distance
|t| from P;.
Notice that the previous perturbation is area preserving: |P| = |P)|.

FIGURE 3. A polygon P and its variation P! (shaded region) as in Defini-
tion 3.8, obtained by moving the vertex P; parallel to the diagonal P;_1P;1
at a distance t > 0.

Proposition 3.9. Let P € Py and let {Pi} be the family of perturbations of P as in
Definition 3.8, obtained by moving the vertex P; parallel to the diagonal P;_1P;y1. Then

d 2sin oy
S P =T [ p@fe— P (o)
dt lt=0 gz P;Piq (3 12)
2sin oy '
S el - Bl )

P 1 P;

where a;—1 € (0,0,_1] is the angle between P;,_1Pit1 and P;_1P;, and a;t1 € (0,0;41] is the
angle between P;_1P;11 and P;P;yy.
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Proof. A flow {®;}; which induces the perturbation {P;}; is explicitly given by
|IE — Pi,1|

r+t—17 ifx e PP,
4 P — P
Dy (z) = | ’Pl | where 7= % . (3.13)
4t ifae PPy, R
7
Then the normal component of the initial velocity is
X v = —%\fﬁ—ﬂ;ﬂ on P 1P;,
liq
X'l/z'zsmgﬁ\ﬂﬁ—ﬂurﬂ on PPiyq,
i
and we obtain (3.12) by applying Proposition 3.3. O

Proposition 3.10. Assume that the polygon P satisfies (1.5) and (1.6). Then the quantity
(3.12) is zero for everyi € {1,...,N}.

Proof. Denote by I the right-hand side in (3.12). Then

. 2Si1’1ai+1 ‘ fl EZ ‘
I_fz‘[/]?iMivP(x)(|x_Mz‘+2)+/M vp(a:)<2—]x—MZ|)}

iPiy1

2sin oy b;_ l;_
21|:/ U'p(l‘)( i—1 o “’II*MZ*”) +/ U”P(CIT)<|$*M¢,1‘+ i—1
liq Pi_1M;_, 2 M; 1 P; 2

6) 2si 4 3 2si i— i—
(L6) 2SIn i1 [6/ vp(x) dHl(x)] - SRRl [6 ! / vp(x) d’Hl(x)]
Z 2 PiPiiy ti 2 Jroim

)

= sin a;11 / vp(z) dH () — sin oy / vp(z) dH (2)
PiPit1

Pi1P;
1 1 .
= f, sin Qg1 < / UP(SU) dHl(-T) - / 1}7)(56) dH1($)> (1:5) 07
U JPP ti1 JET P
where we used the identity Siﬁioj;l = Sinf;ii_l. O

Notice that, if we move the vertex P; according to Definition 3.8, to conclude that the
corresponding first variation is zero it is sufficient that (1.5) and (1.6) hold for the two sides
P; 1 P; and P;Piy.

The strategy to prove Theorem 1.2 for quadrilaterals is mainly based on the previous
proposition: indeed, we will prove that if two consecutive sides have different lengths ¢;_1 # ¢;,
then the first variation of the nonlocal energy with respect to the perturbation in Definition 3.8
is different from zero; in turn, by Proposition 3.10 the quadrilateral does not satisfy the
stationarity conditions (1.5) and (1.6). As a consequence, a quadrilateral satisfying both
(1.5) and (1.6) is necessarily equilateral (that is, it is a rhombus). In a final step we will also
show that the polygon must be equiangular.

4. OVERDETERMINED PROBLEM FOR TRIANGLES

In this section we will give two alternative proofs of Theorem 1.2 for triangles, i.e., in the
case N = 3. The ideas used in both proofs will appear in the next section when we prove the
theorem for quadrilaterals.



OVERDETERMINED PROBLEMS FOR TRIANGLES AND QUADRILATERALS 15

Remark 4.1. Notice that, in the proof of Theorem 1.2 for triangles, we will use only condition
(1.6). In fact, (1.5) is satisfied by every triangle, since the operation of sliding one side
and rescaling to restore the area leaves the triangle unchanged, and the corresponding first
variation is equal to zero.

4.1. Equilateral triangles via reflection arguments. In the first proof we will use reflec-
tion arguments to obtain that if P € &3 satisfies (1.6), then P is equilateral.

First proof of Theorem 1.2 in the case N = 3. Let P € &3 be an arbitrary triangle and as-
sume that P satisfies the condition (1.6). Without loss of generality, assume that P is trans-
lated and rotated so that the midpoint M3 of the side P3P; coincides with the origin of the
(21, x2)-plane, and the side P; Ps lies on the xi-axis.

We show that, assuming condition (1.6) holds on the side P3P;, we have 61 = 63. Suppose
by contradiction #; < 63. Let P denote the reflection of P with respect to the xo-axis, and
define the sets D := P\P and D := P\P (see Figure 4).

Let = € M3P3 and denote by Z € P; M3 the reflection of  in the x9-axis. Then

v5(z) — vp(z) = /ﬁKux—dey— /P K(|z - y]) dy
- [K<|x—y\>dy— / K(|z — y]) dy (4.1)
D D
— [ (#(z = o)~ Kz = uD)) @y <,
D

since |7 —y| > |z — y| for all y € D and K is strictly decreasing. This implies that vs(z) <

vp(x) for all x € M3 Ps. Multiplying both sides by |x — M3| and integrating, then, yields

/M3P3 vp(2)|x — Ms|dH' (z) > /M%(J«")W — M| dH (z) = / vp(x)|x — Ms| dH (z),

Py M3

which contradicts the condition (1.6) on P3P;. This implies that §; = 63, i.e., P is isosceles.
Repeating the argument for another pair of angles, say 6; and 6>, we obtain that 6; = 0y =
03, i.e., P is equilateral. ]

Notice that, by the previous proof, it is sufficient to assume that (1.6) holds just for two
of the three sides of a triangle in order to deduce that it is equilateral.

4.2. Equilateral triangles via first variation arguments. Our second proof is inspired
by the arguments in [7, Section 2.2.2] where the authors study the interaction energy & under
continuous Steiner symmetrizations. Instead, we will use the the volume-preserving variations
in Definition 3.8 and show that the first variation of £ along these perturbations is strictly
positive unless the triangle is isosceles.

The main idea of the proof is to express the first variation of the energy using slices of the
triangle and to compute the derivative of the interaction between two slices. Let us start by
fixing our notation for this subsection. As before, let P € £3 and fix the coordinate axes so
that the midpoint M3 of the side P3P; coincides with the origin of the (x1, x2)-plane, the side
P; P lies on the xj-axis, and the point P» is in the upper half-plane. Assume 6; > 05. For
xo > 0, let

Py = {z1 € R: (21,22) € P}.
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T2 T2

FIGURE 4. P € 25 translated so that the midpoint Mz of the side P3P;
coincides with the origin of the (xl,xg) plane, and the side P; P; lies on the
x1-axis. The sets D = 73\73 and D = 73\73 used in the reflection arguments
(left) and area-preserving variations ®;(P) used in the first variation arguments

(right).

Note that P, C R is an interval (cz, — 72y, Coy + T2,) With rg, > 0 and ¢;, < 0 since 61 > 03
(see Figure 4).
Let {®;}; denote the flow (3.13) introduced in the proof of Proposition 3.9. Then
i 1
(I)t(Pg;2) = P;pz + axo t with o = m7
and
(I)t(P) = {(I‘l,ﬂfg)i xr1 € ‘I)t(PIQ)}
The next lemma shows that the derivative of the interaction between two slices is strictly
positive for C! and even interaction kernels.

Lemma 4.2. Let W € CY(R) be an even function with W'(r) < 0 for r > 0. Then for every
T2, y2 > 0 setting

[Px27py2 // W 331 - yl)Xq)t(’chz)(xl)Xq)t(fpr)(yl) d(L‘l dyl
we have
d .
E‘t:OIW [sz, PyQ] (t> = Cw amln{rm, ry2}‘cw2 - Cy2| ‘xQ - 3/2‘7
where
CW - mln{’W,(T)‘ "re [‘0502 - Cy2’/27 ‘crg - Cyg’ + Txo + T’yQ] } (42)

Proof. For simplicity of notation, we will drop the subscripts on the centers and radii of P,
and Py,. Namely, let Py, = (¢z — s, ¢z +13) and Py, = (¢y — 1y, ¢y + 1y). Assume, without
loss of generality, that y2 > 29 > 0. Then ry, <7, and ¢, < ¢; <0, since ¢ > 03.

Then

Tw [Py, Py | (t / / (21— y1+ co — ¢y + awat — aya t) dys day,
—rgd —ry
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and we get that
d Tz Ty ,
E’t:ozw [P Py (1) = a2 = 32) W' (21 — 1) + (e — ¢y)) dyr day
—Tx 77’y
= a(z2 — y2) // W' (1 — y1) day dy,
R

where R denotes the rectangle [ —r,+ (cz —¢y), 1o+ (cz —¢y)| x [=7y, 7] in the (21, y1)-plane.
Now, let

Rt =Rn{y1 >z}, - =Rn{y <z}, R~ =R n{z <r.},
and D = [rfc +(cx —¢y) /2,70 + (2 — cy)] X [— ry,ry],

and note that R, E‘, D are disjoint subsets of R, with D C R~ (see Figure 5). Moreover
W'(z1 —y1) >0on RT and W/(z1 —y1) <0 on R™. Since x5 — y2 < 0 we get that

%LOIW [Pags Py, ] (t) = @z — y2) //R W' (a1 —y1) ey dyy
> a(xa — o) [//R+ W'(x1 —y1) dey dyy (4.3)

+/~ W/(xl—yl)dﬂﬁldler// W' (x1 —y1)dzy dy: | -
B D

Ty Y1 = T1

Rt Ty

—Tg + Co —Cy Tg Tz +Ca —Cy
T1

—7y R~ D

FIGURE 5. Subsets RT, R~ and D of the rectangle R.

Since RT U R~ is a rectangle with center (5%, 0), for every h > 0 we have that L' (R* N

{y1 =21+ h}) < LY(R" N {y. = 21 — h}). This, in turn, implies that

/ X W' (x1 — y1) doy diy —|—/ - W(x1 —y1)day dy; <0.
R R-
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Returning to (4 3) and using the fact that W is even, we obtain

‘ 7OIW 73;,;2,773,2]( ) = a(ys — x2 / W'(y1 — 1) day dapy

dt
> a(yz —22)|D] min W'(y — 1)
(z1,y1)€D
= — x9)1ry(ce — ¢ min W’ —x
(y2 — z2)ry(Ca — cy) Ein (y1 — 1)
> Cw a(y2 — x2)ry(ce — ¢y),
which yields the result. ]

Now we are ready to give the second proof of Theorem 1.2 in the case N = 3.

Second proof of Theorem 1.2 in the case N = 3. Let P € &3 be as above and assume by con-
tradiction that 61 > 03. As in the proof of Proposition 3.3, to avoid problems in differentiating
we regularize the kernel by introducing a small parameter 6 > 0 and obtain Ky and &5 given
by (3.2). Set Kj(r) = Ks(VI?> +12) = K(VI? + 12 +6). Note that Kj; satisfies the assump-
tions of Lemma 4.2, namely it is a C!, even function with Kj,(r) < 0 for 7 > 0. Then, by
Fubini’s theorem, ’

&) = [ [ Kolle = Dxoim @xom @ dedy = [ [ T, [Por.Pyu] 0 doadie
with [ == |22 — y2|. Hence, by Lemma 4.2, we get

d d
dt L:O&s(@t(P)) - /R/R E‘tZOIKa,L [Pasys Py,] () dza dys

> / / CK&,Z O‘min{rmvrw}‘cwz - Cy2| |z2 — y2| dza dya > Cs
R JR

for some constant Cs > 0, where C;, is given by (4.2). Since Cs is bounded away from zero
uniformly in §, as in the proof of Proposition 3.3 we can pass to the limit as § — 0 and obtain

S| e@m)=1m | @) o

However, due to Proposition 3.10, this contradicts the fact that P satisfies the condition (1.6).

Therefore 61 = 03, i.e., P is isosceles. Repeating this argument for all pairs of angles, we get
that #; = 62 = 03; hence, P is equilateral. O

5. OVERDETERMINED PROBLEM FOR QUADRILATERALS

In this section we prove Theorem 1.2 for quadrilaterals, i.e., in the case N = 4. The proof
exploits the same idea as in the triangle case, inspired by the arguments in [7], and uses a
continuous symmetrization to prove that the stationarity conditions corresponding to sliding
and tilting first enforce the quadrilateral to be equilateral; and then, via a reflection argument,
they imply that the polygon is also equiangular.

Proof of Theorem 1.2 in the case N = 4. Let P € &4 be an arbitrary quadrilateral satisfying
the conditions (1.5) and (1.6) such that the diagonal between P, and Ps lies on the x;-axis,
the midpoint of this diagonal coincides with the origin, and the vertex P, is in the upper half-
plane. As in the case of a triangle, for any xo € R, we let Py, = {z1 € R: (z1,22) € P} CR.
Then Py, = (Czy — Ty, Cay + Tay) for some ¢z, € R and 75, > 0 denoting the center and
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the radius of the slice P,, respectively. Also, we define dy = dist (PQ,{xl = O}) and
dy = dist (P4, {z1 = 0})
We assume by contradiction that a; > @3 where, as in the statement of Proposition 3.9,

ay and ag are the angles between P; P> and Py Ps, and between P P3 and P» Ps, respectively
(see Figure 6). Let {®;}; be the flow defined by

(w1 + Braat,xe) if 29 >0,
‘I)t($1,x2) = (51)
(x1 — B xat,xa) if mo <O,
where the constants 37,3~ > 0 are to be chosen later, so that
Py + Braat ifxzg >0,
D4(Pay) =
v, — B xat  if w9 <O,

and ®4(P) = {(z1,22): 21 € ®4(Pa,)}.

Again, we regularize the kernel by introducing a small parameter 6 > 0 and take Ks and
Es as in (3.2). Set Kj,(r) = Ks5(VI? +r?) = K(VI?>+r? 4 0) and note that it satisfies the
assumptions of Lemma 4.2. By Fubini’s theorem, we write

ex@P)) = [ [ Ealle = sDxom @xom @ dedy = [ [ T, [Peo.Pya] 0 dradie

where

Tis) [Puras Pys) (1) :://K(S,l(xl_yl)Xq)z(’PzQ)(xl)X¢t(Py2)(yl)dajl dyy
7';52
-/ / K (21— g1 + Cay — ¢y + E(w2)t — E(ya)t) dy day
Tz2

with [ = |22 — y2| and

_Bts  ifs>0,
§s) = {—5_5 if s <O0. (52)

Now, differentiating the energy yields

d d
dt t:ogé(q)t(P)) - /R/R E‘tZOIKa,z [Puas Py, (t) dwa dys

d2 d2 d
N /0 /0 dt t:oIKW [P@’PZD] (t) dzg dys

d2 0 d
2 /0 /—d4 E ‘t:oIK‘” [P@ ) Pyz} (t) dag dys9

0 0 d
+ / ) / ) | o [Pa Pon] (1) das e

By using Lemma 4.2 to estimate the first integral (since ST > 0) and the identity

d Tzy  [Tyz
a)t:OIKM [szapyz] (t) = (5(1'2) - g(yQ)) /_ /_ K(/;7l(($1 — yl) + (CI2 — Cyg)) dyl dxl
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to rewrite the second integral, we have that

2| es@p)

d2 d2
= ﬁ"" /O ; CK(S,l min{’/“mzy ry2}|012 — Cy2| |:[;2 — y2| d$2 dy2
da 0 Ta - /
+ 2/ / (Bt oo + 692)/ / K5, ((xl —y1) + (Czy — cy2)) dy; dzq dys das
0 J—ds ey

0 0 d
+ / / E’ | Tiy, [Pras Py (8) daz dyo (5.3)
dy dy t=0

where Cf;, is given by (4.2).
Now, let for zo € [0, dz] and y2 € [—dy, 0]

Is(x2,y2) = (B a2 + B 10 / ng T1 — Y1) + (Cap — ;) dyy day.

Tzg —Tyg

We will show that Zs(z2,72) = 0 for some 87, 37~ > 0. In order to achieve this estimate we
distinguish between two cases: (i) Py lies in the fourth quadrant of the (z1, z2)-plane, or (ii)
Py lies in the third quadrant of the (x1,z2)-plane (see Figure 6).

Py

FIGURE 6. The variation considered in the proof of Theorem 1.2, N = 4:
Case (i) (left) and Case (ii) (right).

Case (i). (Pylies in the fourth quadrant of the (z1, z2)-plane.) Since, by assumption, oy > asg,
for x5 > 0 the center of the slice Py, is given by c¢,, = (xo where ¢ < 0 is the slope of the line
passing through the origin and the vertex P,. We choose 7 = —( > 0 and 3~ =0 in (5.1).

Note that, since P» and P, are on the opposite sides of the x3-axis, we have that c;, — ¢y, <0.
As in the proof of Lemma 4.2, we have
Zs(z2,y2) = 5+1’2/ K y(x1 — y1) day dy,
R
where
R = [— Tro + Coy — Cyoy Ty + Cay — cyz} X [— Tyss ryz]. (5.4)
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Since R is a rectangle centered at ( %, 0) and ¢z, — ¢y, < 0, we have that for every h > 0

£l (R N {y1 =x1 + h}) > cl (R N {y1 =x — h}) (5.5)
Therefore

o B, Hoe / 1 / 1

Ts5(w2,y2) = Ky (=h)dL" + Ks,(h)dL" | dh
\/i 0 Rﬂ{ylle-i-h} Rﬁ{ylle—h}

_ Bt [T (2R - my) — LY(R - my)) dh

=" fu) (L1 (RO g = @1 = BY) = L (RO {yn = 71+ b))

= 0,

by (5.5) and the fact that Kj,(h) <0 for h > 0.

Case (ii). (Py lies in the third quadrant of the (z1,z2)-plane.) Now, given any x5 € R, the
center of the slice P,, is given by c¢;, = (z2 if x93 > 0 and by ¢, = nre if 9 < 0, where ( <0
and n > 0 are two constants given by the slopes of the lines passing through the origin and
the vertices P, and Py, respectively. In this case we choose 37 = —( >0 and 3~ =71 >0 in
(5.1), and, as before, rewrite Zs(x2,y2) as

Ts(wn, o) = (B+as + 6 ye) / / K}y (o1 — 1) da dyy,
R

where R is the rectangle defined by (5.4).
Suppose T xs + 7y2 > 0. Then

Cay — Cyp = (T2 — MY = — (Bt + B y2) <0,

and, as in the previous case, R is a rectangle centered on the negative x-axis, hence we get
that Zs(z2,y2) > 0.

Suppose ST xo+ 7y2 < 0. Then ¢, — ¢y, > 0, and therefore the center of the rectangle R
is on the positive zj-axis: it follows that for every A > 0

El(Rﬂ{yl =x1+ h}) <£1(Rﬂ{y1 =z1 — h}).

Hence we get that

0+°° K}y (h) (cl(R N{y =21 —h)) — LYRN {y1 = 21 + h})) dh <0,

and since 31Txs + B7y2 < 0, we conclude that Zs(z2,y2) > 0.
Conclusion. We proved that in both cases, for a suitable choice of 37 > 0 and 8~ > 0, we

have Zs(x2,y2) = 0 for every xo € [0,ds2] and ya € [—dy,0].
Going back to (5.3) we obtain that

d do  prdo )
a " 055((1375(77)) > ﬁJr/ CKE,I mln{rwzv ryz}‘cm - Cy2| “732 - y2| dxg dy2
= 0 0

0 0 d
i /d4/d4 dt ‘t:OIK‘” [77@,77”} (t) do dys.

Concerning the second integral above, it is sufficient to observe that it is equal to zero in
Case (i) (since f~ = 0), and it is nonnegative in Case (ii) as a consequence of Lemma 4.2
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(since 3~ > 0). Therefore, recalling the definition (4.2) of Ck;,, we have

d
— >
=| _&stedm) = cs>o,

for a constant Cs bounded away from zero uniformly in §. Again, as in Proposition 3.3, we
can pass to the limit § — 0 and get that & o (@:(P)) > 0. However, this contradicts, via
Proposition 3.10, the fact that P satisfies (1.5) and (1.6). Therefore a; = as.

By swapping P» and P in the arguments above yields that, in fact, ; = 03. Now,
repeating the same arguments for the vertices P; and P3 (that is, taking the diagonal PPy

as the direction of symmetrization), we obtain that 0y = 60y, i.e., that P is a rhombus.

~ Tx2

P4 PZ P2 PS
A bttt )
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ n \
\ D \ D
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
T
Py My Py !

FIGURE 7. A reflection argument shows that if P is rhombus and satisfies
(1.6) then P has to be a square. Here the reflection of P in the xg-axis is the
rhombus P depicted with the dashed lines.

Finally, we are going to use a reflection argument similar to the one in the first proof of
Theorem 1.2 in the case N = 3 in order to conclude that P is a square. Since £ is invariant
under rigid transformations, suppose the side P; P, lies on the xj-axis and the midpoint My
coincides with the origin. Suppose 6 < 0. Letji’v denote the reflection of P with respect to
the x9-axis, and define the sets D := P\P and D := P\P (see Figure 7). Let z € MyP; and
denote by ¥ € Py My the reflection of z in the xs-axis. Then the same calculation as in (4.1)
shows that vs(z) — vp(z) < 0. Again, multiplying both sides by |z — M| and integrating,
then, yields a contradicts with the condition (1.6); hence, 6; = 64, and we conclude that P is
a square. ]
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